Hampton 银弹 Silver Bullets

Hampton 银弹 Silver Bullets

Applications

Additive screen for the optimization of protein crystals
For use with soluble proteins and membrane proteins
Additive screen to discover different crystal forms
Secondary or orthogonal crystallization screen when traditional screens are not successful
Additive screen for the optimization of protein solubility and stability

Features

Developed at Hampton Research
Screens a portfolio of small molecules and excipients for their ability to establish stabilizing, intermolecular, hydrogen bonding, hydrophobic and electrostatic interactions which could promote lattice formation and crystallization

Small organic acids & organic salts
Biologically active small molecules
Amino acids & peptides
Macromolecular digests
Co-factors & ligands
Biochemical pathway intermediates
Nucleotides, pharmacaphores & carbohydrates

Description
Silver Bullets screens a portfolio of small molecules for their ability to establish stabilizing, inter molecular, hydrogen bonding, hydrophobic and electrostatic interactions which could promote stability, lattice formation, and crystallization.1-3

Published results with the Silver Bullets have been very encouraging, with more than twice as many proteins being crystallized overall as were crystallized from controls free of any small molecules.1-3

X-ray diffraction analysis has revealed the small molecule Silver Bullets in the crystal lattice, involved at the centers of hydrogen bonding networks and electrostatic interaction.1-3 Silver Bullets is compatible with hanging, sitting and sandwich drop vapor diffusion, microbatch, free interface, and microdialysis crystallization methods. Silver Bullets can be used with Dynamic Light Scattering (DLS), ThermoFluor, and Size Exclusion Chromatography assays.

Silver Bullets reagent portfolio
•Organic salts and acids
•Biologically active small molecules
•Amino acids and peptides
•Macromolecular digests

The Silver Bullets kit is a library of small molecules that have been shown to promote crystal lattice formation. X-ray diffraction analysis has demonstrated the reagents have the ability to:

•Stabilize the conformation of the protein
•Perturb the interaction of the protein with the solvent
•Participate in forming important lattice contacts
•Build the crystal lattice by forming reversible cross-links between the macromolecules in the crystal

The Silver Bullets kit is composed of 96 solutions in a single Deep Well block (Greiner 786261 block specifications: Total Volume: 0.5 mL Working Volume: 0.03 – 0.7 mL at Room Temperature 0.03 – 0.55 mL at -20ºC, Well Profile: Conical (V), Bottom Well Bottom: Solid, Plate Color: Translucent), HT format.

Each Silver Bullets reagent is a mixture of small molecules or macromolecular digests in 0.02 M HEPES sodium pH 6.8 buffer. Each solution contains between 2 and 20 small molecules.

Silver Bullets reagent volume is 0.5 ml (each well).

ThermoFluor is a registered trademark of Johnson & Johnson.

Hampton  Silver Bullets Bio

Silver Bullets • Silver Bullets Bio

Silver Bullets • Silver Bullets Bio

上海金畔生物作为Hampton蛋白结晶产品的代理商,竭诚为您服务,欢迎新老客户咨询。

Applications 应用

Additive screen for the optimization of protein crystals
For use with soluble proteins and membrane proteins
Additive screen to discover different crystal forms
Secondary or orthogonal crystallization screen when traditional screens are not successful
Additive screen for the optimization of protein solubility and stability

Features

Screens a portfolio of small molecules and excipients for their ability to establish stabilizing, intermolecular, hydrogen bonding, hydrophobic and electrostatic interactions which could promote lattice formation and crystallization

Small organic acids & organic salts
Biologically active small molecules
Amino acids & peptides
Macromolecular digests
Co-factors & ligands
Biochemical pathway intermediates
Nucleotides, pharmacaphores & carbohydrates

 

Developed at Hampton Research
Two sets of 96 reagents, composed of more than 1,090 chemicals, of which more than 400 are uniqu

Please note, the Silver Bullets Bio Screen is temporarily unavailable as a new formulation is in development

 

Hampton AlumaSeal™ II Sealing Film and Applicator

Hampton AlumaSeal™ II Sealing Film and Applicator

Applications

Sealing film used to reseal HT format screen kits in polypropylene blocks and plates

Features

Excellent seal
Film conforms to raised chimney wells
Easily pierceable with single or multichannel pipettors and robotic probes
Heat & cold resistant, recommended for temperatures from -80 °C to +120 °C
Certified DNase-, RNase-, and nucleic-acid-free
Less evaporation than clear films
Excellent barrier properties, virtually no reagent evaporation or drying
 Description
A 38 µm soft non-permeable aluminum foil sealing film with strong medical-grade adhesive, AlumaSeal II sealing films eliminate the need for heat-sealing devices or mats during the resealing of reagents in polypropylene deep well blocks. Each sealing film measures 82.6 x 142.9 mm and offers sufficient sealing area for 96 deep well blocks. Length between the perforations with end tabs removed is 125.4 mm. Compared to other aluminum foils, AlumaSeal II has less tendency to roll back on itself when removing the backing paper and it conforms well to the plate during application.AlumaSeal II is a soft, pierceable adhesive film designed for the convenient and rapid sealing of polypropylene deep well blocks. A multiple split backing with two end tabs allows for easy, accurate positioning and secure sealing. The use of an adhesive sealing film minimizes evaporation and helps to prevent well-to-well cross contamination in reagent blocks. AlumaSeal II films are easily pierced by pipettte tips or robotic probes or piercing tools for direct reagent recovery without significant gumming by adhesive.

AlumaSeal™ II Sealing Film and Applicator

AlumaSeal™ II Sealing Film and Applicator

CAT NO NAME DESCRIPTION
HR8-069 AlumaSeal II Sealing Film 100 pack
HR4-413 Film Sealing Paddle 5 pack

低温泡沫杜瓦瓶 Spearlab Cryogenic Foam Dewars

低温泡沫杜瓦瓶 Spearlab Cryogenic Foam Dewars
Spearlab Cryogenic Foam Dewars
Spearlab Dewars
Spearlab Cryogenic Foam Dewars
HR4-662 Cryogenic Foam Dewar (500 ml) – Small  500ml规格
Spearlab Cryogenic Foam Dewars
HR4-675 – Spearlab Cryogenic Foam Dewar (2 liter)  2L规格
低温泡沫杜瓦瓶 Spearlab Cryogenic Foam Dewars

Applications 应用

    Cryocrystallography 蛋白结晶学

Features

  Each dewar is supplied with a lid  每个杜瓦瓶都配有盖子

  Proprietary foam construction (USPTO # 7,971,744)

  Mini (130 ml), Small (500 ml), Standard (800 ml), Large (1400 ml) and Tall (1800 ml)

   Reduced ice formation on dewar lip

  Easier to dry

   Foam construction reduces slipping

Description
Spearlab FD-130 Cryogenic Foam Dewar (130 ml) – Mini : Small, hexagonal outside, hand held foam dewar, maximum volume 175 ml. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 2 inches in diameter by 3.5 inches deep, so that it easily holds 130 ml and a maximum volume of 175 ml of liquid nitrogen. The HR4-676 has an overall height of approximately 4.5 inches without cover and the width is 3.5 inches at the top and 3.75 inches on the bottom (measured on the flats of the hexagon). Circular cover is approximately 0.5 inches tall x 3.5 inches diameter.

Spearlab Cryogenic Foam Dewar (500 ml) – Small: The small foam dewar shape is circular, with a protruding handle, so that it resembles a large teardrop. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 4.5 inches in diameter by 2.8 inches deep, so that it easily holds 500 ml of liquid nitrogen.

Spearlab FD-800 Cryogenic Foam Dewar (800 ml) – Standard: The standard foam dewar shape is circular, with a protruding handle, so that it resembles a large teardrop. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 5.8 inches in diameter by 2.8 inches deep, so that it easily holds 800 ml of liquid nitrogen.

Spearlab FD-1400 Cryogenic Foam Dewar (1400 ml) – Large: The large foam dewar shape is circular, with a protruding handle, so that it resembles a large teardrop. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 6.3 inches in diameter by 3.8 inches deep, so that it easily holds 1400 ml of liquid nitrogen. Overall height is approximately 6 inches without cover and the width is 9 inches on the short axis and 11 inches on the long axis. Cover approximately 0.5 inches tall x 9 inches diameter.

Spearlab FD-1800 Cryogenic Foam Dewar (1800 ml) – Tall: The tall foam dewar shape is a tapered octagon on the outside with a cylindrical interior. The tapered octagon features a wide, stable base. Each dewar is supplied with a matching foam lid to insulate the contents from ambient air. Dimensions of the cylindrical cavity in this vessel are 3.5 inches in diameter by 12.5 inches deep, so that it holds approximately 1,800 ml of liquid nitrogen. The outside dimensions of the tall dewar are 15.25 inches tall with a 6.25 inches wide top and a 7.75 inches wide base (measured on the flats of the octagon). The cover is 6.5 inches in diameter and 0.5 inches thick.

The patented (USPTO # 7,971,744) design of the Spearlab Cryogenic Foam Dewar makes it easy to handle and safer to use than a traditional low profile glass dewar. Also, because of its lower thermal mass, a foam vessel will cause less boil off when it is filled with liquid nitrogen. Additionally, the dewar will accumulate less frost during regular use. The end result is that less liquid nitrogen is consumed.

The dewars are made from cross-linked polyethylene foam. A density of 4 pounds per cubic foot is used for the 130 ml and 800 ml dewars. A density of 2 pounds per foot is used for the 1400 ml and 2 liter dewars. The higher density foam has significantly higher mechanical strength and stiffness. The lower density foam has slightly lower thermal conductivity. Like most lightweight insulation materials, the thermal conductivity of the foam is predominantly determined by the thermal conductivity of air, which eventually permeates the pores of the foam material.

CAT NO NAME DESCRIPTION
HR4-676 Cryogenic Foam Dewar (130 ml) – Mini each
HR4-662 Cryogenic Foam Dewar (500 ml) – Small each
HR4-673 Cryogenic Foam Dewar (800 ml) – Standard each
HR4-674 Cryogenic Foam Dewar (1400 ml) – Large each
HR4-675 Cryogenic Foam Dewar (2 liter) – Tall each