日本进口三博特iP-TEC系列保温运输箱iPS活细胞运输盒(活细胞/活体组织)

日本进口三博特iP-TEC系列保温运输箱iPS活细胞运输盒(活细胞/活体组织)
日本进口三博特iP-TEC系列保温运输箱iPS活细胞运输盒(活细胞/活体组织):为实现活细胞、活体组织的实时运输,三博特联合iPS PORTAL成功研发出了iP-TEC® 系列产品。该系列由保温运输箱(多款型号的保温运输箱、蓄热板)、Flask-25培养瓶和迷你刮刀、细胞/组织运输盒、硅胶盖膜、盖板等组成。可根据运输距离和目的选择所需的组合。

【详细说明】

日本进口三博特iP-TEC系列保温运输箱iPS活细胞运输盒(活细胞/活体组织)

iP-TEC® 系列
为实现活细胞、活体组织的实时运输,三博特联合iPS PORTAL成功研发出了iP-TEC® 系列产品。
该系列由保温运输箱(多款型号的保温运输箱、蓄热板)、Flask-25培养瓶和迷你刮刀、细胞/组织运输盒、硅胶盖膜、盖板等组成。可根据运输距离和目的选择所需的组合。运输盒搭配二氧化碳释放剂CP-0.5L使用,可实现内部CO2浓度保持在5%左右。

保温运输箱

适用范围 远距离、寒冷地区的长时间运输 节省经费的远距离运输 远距离、寒冷地区的长时间运输 近距离、短时间运输
产品
图片
名称 精装版保温运输箱-V8.5 标准版保温运输箱-X13 精装版保温运输箱-V19 轻便版保温运输箱-S6.6
特点 轻型小巧,易于手持搬运 高性价比,可定制 运送量大 设施内的近距离运输
重量 约3.5kg(仅箱子)
约7kg
(5块蓄热板+箱子)
约2.2kg(仅箱子)
约6kg
(6块蓄热板+箱子)
约4.5kg(仅箱子)
约9.5kg
(6块蓄热板+箱子)
约0.2kg(仅箱子)
约1.5kg
(2块蓄热板+箱子)
容积 8.5L 13L 19.4L
外部
尺寸
W350×D300×H330
(mm)
W366×D356×H394
(mm)
W450×D350×H360
(mm)
W299×D268×H197
(mm)
内部
尺寸
W230×D175×H215
(mm)
W236×D226×H244
(mm)
W330×D235×H250
(mm)
W240×D160×H130
(mm)
运输时间 (25℃时)150小时以上
(5℃时)77小时
(25℃时)100小时
(5℃时)35小时
(25℃时)150小时
(5℃时)60小时
(25℃时)36小时
(5℃时)10小时

产品信息

产品编号 产品名 规格
28482 iP-TEC® 精装版保温运输箱 V8.5(仅箱子) 1pc
28481 iP-TEC® 精装版保温运输箱 V8.5 套装(箱子,36-蓄热板5块) 1set
28486 iP-TEC® 精装版保温运输箱 V8.5 套装(箱子,24-蓄热板5块) 1set
28463 iP-TEC® 标准版保温运输箱 X13 (仅箱子) 1pc
28465 iP-TEC® 标准版保温运输箱 X13 套装(箱子,36-蓄热板6块) 1set
28485 iP-TEC® 标准版保温运输箱 X13 套装(箱子,24-蓄热板6块) 1set
28460 iP-TEC® 精装版保温运输箱 V19 (仅箱子) 1pc
28462 iP-TEC® 精装版保温运输箱 V19 套装(箱子,36-蓄热板6块) 1set
28484 iP-TEC® 精装版保温运输箱 V19 套装(箱子,24-蓄热板6块) 1set
28466 iP-TEC® 轻便版保温运输箱 S6.6 套装(箱子,36-蓄热板2块) 1set
28487 iP-TEC® 轻便版保温运输箱 S6.6 套装(箱子,24-蓄热板2块) 1set

日本进口三博特iP-TEC系列保温运输箱iPS活细胞运输盒(活细胞/活体组织)

iP-TEC® 36-蓄热板

突出的温度维持力,能将温度长时间维持在36℃左右,可反复使用。托盘型的容器形状,不仅适用于定温运输,还可作为保温托盘用于实验室中。并放2块孔板,可在工作台内边保温边作业。蓄热板可以稳固堆叠,节省空间。

◆蓄热板调温方法(参考)
1.在45℃下,把蓄热板分开一定间隔,静置4~8小时,直至板内物质完全融化为液体;
2.36℃静置1小时,或者室温下(20~25℃)静置10~15分钟,直至表面温度降至36℃后,才能使用。
请用恒温器、干热灭菌器、恒温干燥器、温箱等(可设定45℃的)设备进行调温。
※请勿使用架板比设定温度要高的调温设备。
推荐使用小型红外线测温仪(货号:27833测量蓄热板温度。
可长时间维持在24~25℃的高性能新产品登场!
24-蓄热板(货号:28483

希望与细胞处理中心(CPC)或医疗领域的环境温度处于同一条件下运输时可考虑使用本产品!

产品信息

产品编号 产品名 尺寸(mm) 材质 重量
28454 iP-TEC® 36-蓄热板 230×162×29H PVC 约650g
28483 iP-TEC® 24-蓄热板 230×162×29H PVC 约650g

※可进行酒精喷雾消毒(注)不能高压灭菌

iP-TEC® flask-25培养瓶 (P-25)30ml
iP-TEC® 迷你刮刀 (150-3

iP-TEC® Flask-25培养瓶压缩了瓶身厚度,独特的瓶身设计可在不改变iPS细胞培养面积(25cm2)的前提下,实现安全运输且能节省55~65%的培养液。

iP-TEC® 迷你刮刀 (150-3全长150mm,刀宽13mm;聚碳酸酯材质。

*培养瓶P-25需搭配迷你刮刀150-13使用。

产品信息

产品编号 产品名 规格
28445 P-25 100(10袋X10)
28448 150-13 100(1袋X100)

相关产品

产品编号 产品名 规格 材质
iP-TEC® 微量滴定板盖帽
28488 适合6孔 1pc 医用硅胶
2214877514251156.jpg
28489 适合6孔 10 pcs
28490 适合12孔 1pc
28491 适合12孔 10 pcs
28492 适合24孔 1pc
28493 适合24孔 10 pcs
28494 适合96孔 1pc
28495 适合96孔 10 pcs
iP-TEC® 微量滴定板盖板
28496 适合6孔 1pc PVC
2214877514251156.jpg
28497 适合6孔 10 pcs
28498 适合12孔 1pc
28499 适合12孔 10 pcs
28500 适合24孔 1pc
28501 适合24孔 10 pcs
28502 适合96孔 1pc
28503 适合96孔 10 pcs
iP-TEC® 培养皿盖帽
28504 适合φ35 1pc 医用硅胶
28505 适合φ35 10pcs
28506 适合φ60 1pc
28507 适合φ60 10pcs
28508 适合φ90 1pc
28509 适合φ90 10pcs
iP-TEC® 培养皿盖帽板
28510 适合φ35 1pc PVC
28511 适合φ35 10pcs
28512 适合φ60 1pc
28513 适合φ60 10pcs
28514 适合φ90 1pc
28515 适合φ90 10pcs
iP-TEC® 活细胞及活体组织运输用中间容器 PC-0.5
28516 PC-0.5 0.5L 本体:PC
金属:SUS
iP-TEC® PC-0.5专用缓冲垫
28530 缓冲垫(厚20mm) 130×90×20H(mm)
弹性体(可高压灭菌)
28531 缓冲垫(厚30mm) 130×90×20H(mm)
Culture Pal® CO2 释放剂
28542 CP-0.5L 0.5L用

日本进口三博特iP-TEC系列保温运输箱iPS活细胞运输盒(活细胞/活体组织)

日本柴田科学环境仪器官网 中国代理商 MT-05型 労研式マスクフィッティングテスター MT-05型

労研式マスクフィッティングテスター MT-05型

日本柴田科学环境仪器官网 中国代理商 MT-05型 労研式マスクフィッティングテスター MT-05型

Mask fitting tester, Model MT-05
動画
マスクフィッティングテスターMT-05型は、各種作業環境現場や医療現場で使用される防じんマスクの顔面への密着状態を1分以内で定量的に確認できるポータブルタイプのテスターです。労働衛生現場での粉じんばく露防止、医療現場での空気・飛まつ感染防止対策に有効です。
  • ●室内粉じんを用いて防じんマスクの顔面への定量的なフィットテスト、フィットチェックが可能です。
    ●顔面装着時のマスク内外の粒子個数を短時間で測定して漏れ率を表示します。
    ●フィットテストモード、フィットチェックモード、トレーニングモードの3つのモードを備えていますので、それぞれの用途に応じて使い分けることが可能です。
    ●試験ガイドによる測定(マスク非破壊)とチューブジョイントセットを使用した測定(マスク穴開け)のそれぞれの測定が行えます。
    ●呼気中水分の結露現象を防止するための加熱機構を内蔵しています。
    ●専用ミラー付で、マスクの装着具合を鏡で確認できます。
    ●オプションの外部表示ユニットは、離れた位置からでも漏れ率を確認できる表示器ですので、呼吸保護具着用時の安全衛生訓練・教育等に便利です。

    ■用途
    ●医療従事者の方々の空気・飛沫感染防止対策(自分の顔に合ったN95マスク等の選択、マスク装着時の密着性の確認、マスク装着訓練や教育等)。
    ●インジウム、リフラクトリーセラミックファイバー等粉じん関連作業従事者の方々が使用する呼吸用保護具の防護係数の測定および、ばく露防止対策(マスク装着時の密着性の確認、マスク装着訓練や教育等)。

品目コード別情報 (仕様)

この製品を比較表に追加する
製品写真
品目コード 080200-07
型式 MT-05
測定対象 マスクと顔面との密着性の評価
測定項目 粒子個数と漏れ率、防護係数
測定原理 レーザー光散乱方式による粒子個数濃度
(室内粉じんおよびマスク内粉じんの粒子個数比率測定)
対象粒子径 0.3μm以上、0.5μm以上、0.3~0.5μm、から選択
測定範囲 計数範囲:0~9999999カウント、
漏れ率:0~100%、防護係数:1~10000
測定精度 5%(粒子数濃度100000個/L時)
測定時間 標準で、マスク外側・マスク内パージ各10秒、測定各3秒(合計約26秒)
吸引流量 1 L/min
内部機能 漏れ率・防護係数・フィットファクター演算機能、加熱管温度調節機能、
ドライヤー機能、RS-232C出力機能
使用環境 0~40℃、30~90%rh(ただし、結露がないこと)
本体保護装置 ヒューズ管(AC250V用、φ5.2×20mm、3.15A) ※1
電源 AC100V、50/60Hz、約0.5A
寸法 210(W)×240(D)×232(H)㎜(突起部除く)
質量 約3kg
付属品 電源コード(日本国内仕様)1本、
コンセントアダプター(2P/3P変換プラグ)1コ、
予備ヒューズ管(3.15A)1コ、
サンプリングチューブ(マスク内用、透明)1.5m 4本、
サンプリングチューブ(外側用、黄緑色)1.5m 1本、
チューブコネクタ2個、試験ガイド10コ、クリップ1コ、
ゼロチェック用高性能フィルター1コ、
チューブジョイントセット100セット1箱、
チューブジョイント取付工具1組1箱、
吸引口キャップ2コ、
外部出力コネクタキャップ1個、USBコネクタキャップ1コ
価格(税別) 850,000円
備考 ※ 本製品は防爆仕様ではありません。
※1 ヒューズ管は、タイムラグヒューズ等をご使用ください。速断ヒューズは使用しないでください。

オプション製品・スペアパーツ

抗CPM,单抗(WK)


产品编号 产品名称 产品规格 产品等级 产品价格
014-27501 Anti CPM, Monoclonal Antibody (WK) 
抗CPM单克隆抗体(WK)
100μL 免疫染色用

抗CPM,单抗(WK)呼吸道、肺泡前驱细胞的标记抗体

抗CPM,单抗(WK)


  羧肽酶M(CPM)是一种在细胞膜表面表达的酶,这种酶能切割位于肽或蛋白质C末端的精氨酸和蓖麻蛋白。近年有研究发现,羧肽酶M能用作呼吸道和肺泡的前驱细胞或肝前驱细胞的标记抗体。

 


◆产品概要


● 组成:磷酸缓冲溶液,50w/v%甘油及0.05w/v%叠氮化钠

● 浓度:第一次试剂检测值1.0mg/mL

● 子类别:小鼠IgG2b

● 稀释率

      细胞计数法  1:100~200

      免疫染色   1:100~200

      免疫印迹        1:1,000

 


◆使用事例


  将人iPS细胞分化到肺前驱细胞中。分散分化后的细胞,然后用新研发的CMP抗体对细胞进行染色,最后通过免疫染色区分细胞。高表达的细胞集团的CMP,有效作用于肺泡上皮细胞和呼吸道上皮细胞的分化诱导中。


抗CPM,单抗(WK)

<数据提供 京都大学研究生院 医学研究科 后藤慎平教授>

参考文献


[1] 

Yamamoto, Y., Gotoh, S., Korogi, Y., Seki, M., Konishi, S., Ikeo, S., Sone, N., Nagasaki, T., Matsumoto, H., Muro, S., Ito, I., Hirai, T., Kohno, T., Suzuki, Y. and Mishima, M.: Nat. Methods,14, 1097 (2017).

[2] 

Hawkins, F., Kramer, P., Jacob, A., Driver, I., Thomas, DC., McCauley, KB., Skvir, N., Crane, AM., Kurmann, AA., Hollenberg, AN., Nguyen, S., Wong, BG., Khalil, AS., Huang, SX., Guttentag, S., Rock, JR., Shannon, JM., Davis, BR. and Kotton, DN.: J. Clin. Invest., 127, 2277 (2017).

[3] 

Konishi, S., Gotoh, S., Tateishi, K., Yamamoto, Y., Korogi, Y., Nagasaki, T., Matsumoto, H., Muro, S., Hirai, T., Ito, I., Tsukita, S. and Mishima, M.: Stem Cell Reports, 6, 18 (2016).

[4] 

Kido, T., Koui, Y., Suzuki, K., Kobayashi, A., Miura, Y., Chem, EY., Tanaka, M. and Miyajima, A.: Stem Cell Reports, 5, 508 (2015).

[5] 

Gotoh, S., Ito, I., Nagasaki, T., Yamamoto, Y., Konishi, S., Korogi, Y., Matsumoto, H., Muro, S., Hirai, T., Funato, M., Mae, S., Toyoda, T., Sato-Otsubo, A., Ogawa, S., Osafune, K. and Mishima, M.: Stem Cell Reports, 3, 394 (2014).

甘露聚糖酶检测片剂 (1000) Mannazyme – 1000 Tablets 货号:T-MNZ-1000T Megazyme中文站

甘露聚糖酶检测片剂 (1000)

英文名:Mannazyme – 1000 Tablets

货号:T-MNZ-1000T

规格:1000 Tablets

High purity dyed and crosslinked Mannazyme tablets for the measurement of enzyme activity, for research, biochemical enzyme assays and in vitro diagnostic analysis.

For the assay of endo-1,4-ß-D-mannanase. Containing AZCL-Galactomannan (carob).

PDF Download

暂无问题解答

暂无视频

负压装置 美国AXYGEN AXYVAC

名称:负压装置

品牌:美国AXYGEN

订货号:AXYVAC

负压装置                                                        美国AXYGEN                                                        AXYVAC

咨询此产品

产品介绍

产品特性:

  • 同时适用于制备管体系和96孔板体系
  • 整合负压调节装置
  • 由牢固、可长期使用的材质做成

配置如下

  • 负压装置底
  • 负压装置盖
  • 中间支架
  • 单管支架
  • 不锈钢支架
  • 废液槽

注:顾客必须自己提供硅胶管连接真空泵与负压装置

BAMBANKER® 无血清细胞冻存液


产品编号 产品名称 产品规格 产品等级 产品价格
302-14681 BAMBANKER
 BAMBANKER冻存液
120mL
306-14684 BAMBANKER
 BAMBANKER冻存液
20mLx5
306-95921 BAMBANKER Direct
 BAMBANKER直接冻存液
20mL

BAMBANKER®BAMBANKER® 无血清细胞冻存液

无血清细胞冻存液

BAMBANKER® 是一种无血清细胞冻存液。可在-80℃长期保存细胞(肿瘤细胞和常规细胞)。

BAMBANKER® 无血清细胞冻存液

◆产品特性

 ● 即用型细胞冻存液

 ● 无需分步降温,直接使用

 ● 无需稀释

 ● 无需程序降温盒

 ● -80℃长期保存

 ● 无血清

无血清冻存液的优点

 ● 与含血清类型相比,批次间的成分组成差异小,可保持稳定的品质。

 ● 不含血清,因此没有因动物源的未知成分和感染物质所产生的影响与风险。

 ● 可对无血清驯化细胞进行冷冻,节省再驯化步骤。

 

操作流程

1)收集对数生长期的细胞(5×105-1×107个细胞)

2)用1mL该细胞冻存液悬浮细胞,置于冻存管中,不需预冷,直接-80℃冷冻保存,也可-80℃冻存12小时后可

      转移至液氮中保存。

3)用恒温箱或者水浴锅快速复苏细胞

      *冷冻细胞必须处于对数生长期

BAMBANKER® 无血清细胞冻存液

 

无菌检测**

内毒素:生色底物法

支原体:荧光抗体法

真菌和细菌:依据日本药典

**:可索取检验证书)

 

 

BAMBANKER® Direct

BAMBANKER Direct是“无血清型”细胞冻存液。

BAMBANKER® Direct无需离心收集细胞

BAMBANKER® 无血清细胞冻存液

① 不需冻存前预处理,操作简便

② 不需稀释,直接使用

③ 无需分步降温,直接使用

④ 可快速、长期冻存细胞(-80℃或液氮)

⑤ 不含血清

 

BAMBANKER® 无血清细胞冻存液

 



BAMBANKER® Direct冻存步骤VS常规冻存步骤

使用本产品无需经过离心等复杂步骤,只需往培养基内添加与培养液等量的BAMBANKER Direct,再分装到冻存管,置于-80℃便可冻存细胞。

 

应用

BAMBANKER使用例】

 细胞名称  保存时间
生存率
  BAMBANKER  公司A(含血清)
公司A(不含血清)

P3U1

(小鼠骨髓瘤细胞系)

12个月
95% 95% 70%

K562

(人白血病细胞系)

12个月
73% 70% 60%
人体胃黏膜上皮细胞 10个月
100% 62% 56%

human γδT cells

(人γδT细胞)

10个月
65% 37% 35%

 Daudi

(人 B细胞系)

12个月
100% 100% 92%

PC12

(大鼠源肾上腺嗜铬细胞瘤)

11个月
95% 59% 20%

human B cell line 

(人B细胞系)

9个月
74% 54% 35%

OKT4

(小鼠杂交瘤细胞)

12个月
100% 100% 92%

B细胞系

(猴)

10个月 56% 40% 18%

低温冻存实验证明以下细胞保存完好

 

3T3‐L1(小鼠前脂肪细胞系)

A431(人扁平上皮癌细胞系)

BAEC(牛主动脉血管内皮细胞系)

Balb/3T3(小鼠成纤维细胞系)

C2C12(小鼠骨骼肌细胞系)

 Daudi(人B细胞系)

ECV304(人脐静脉内皮细胞系)

H295R(肾上腺皮质细胞)

HEK293(人胚胎肾细胞系)

HEK293T(人胚胎肾细胞系)

HeLa(人子宫颈癌细胞系)

HeLa S3(人子宫颈癌细胞系)

HepG2(人肝癌细胞系)

HFF(人正常成纤维细胞系)

Huh7(人肝癌细胞系)

Jurkat(人白血病T细胞系)

K562(人慢性骨髓性白血病细胞系)

KATOIII (人胃癌上皮细胞系)

KLM‐1(人胰腺癌细胞系)

MDCK(犬肾小管上皮细胞系)

MEF(小鼠胚胎成纤维细胞)

NIH3T3(小鼠胚胎皮肤细胞)

OKT4(小鼠杂交瘤细胞)

OP9(小鼠骨髓基质细胞)

P3U1(小鼠骨髓瘤细胞系)

PANC‐1(人胰腺癌细胞系)

PC12(大鼠源肾上腺嗜铬细胞瘤)

RPE(人视网膜上皮细胞系)

SNL(小鼠胚胎成纤维细胞)

TSU‐Pr1(人前列腺癌细胞系)

Vero(非洲绿猴肾细胞系)

human γδT cells (人γδT细胞)

human B cell line (人B细胞系)

HDF(人皮肤成纤维细胞)  HCC20(人乳腺原发性导管癌细胞) BMMCs(人骨髓单核细胞系)
BMMCs(猪骨髓单核细胞系) BMSCs(马骨髓间充质干细胞系) C1(人成纤维细胞系)
CEF(牛胚胎成纤维细胞) CHO-K1(中国仓鼠卵巢细胞系) DPCs(大鼠牙髓细胞)
DPCs(人牙髓细胞) ESCs(人胚胎干细胞) EVT(人绒毛外滋养层细胞)
GH3(大鼠垂体瘤细胞) Gli36(胶质瘤细胞系)
h1(人类胚胎干细胞)
h9(人类胚胎干细胞) HN4(人口腔上皮细胞系)

HS-RMS-2

(多形性横纹肌肉瘤细胞系)

IPS(人诱导性多能干细胞)

LNCaP clone FGC

(人前列腺癌细胞)

MCF 10A(人正常乳腺细胞)

MEF-BL/6-1

(小鼠胚胎成纤维细胞)

MNCs(人单核细胞) MSCs(大鼠间充质干细胞系)
PBMCs(人外周血单个核细胞) PDL(人牙周膜细胞) pES(大鼠孤雌胚胎干细胞系)
Sf9(草地贪夜蛾细胞系) U251(胶质瘤细胞系) U87(胶质瘤细胞系)
VT(人绒毛膜滋养层细胞) 癌症干细胞 大鼠肝细胞

猴B细胞系

人外周血活化淋巴细胞

永生化人肌肉细胞

小鼠脾脏活化淋巴细胞

小鼠ES细胞系

人胃上皮细胞

大鼠神经祖细胞 大鼠脂肪细胞 狗肿瘤细胞
胶质瘤细胞系 牛脂肪细胞 牛子宫内膜上皮细胞
人扁桃体细胞 人肝细胞 人骨髓CD34+细胞
人巨噬细胞 人淋巴细胞 人输卵管上皮细胞
人胎儿卵巢成纤维细胞 人胎儿卵巢体细胞 人自然杀伤细胞
神经祖细胞 小鼠颅骨成骨细胞 心肌祖细胞
猪成纤维细胞

 

ES细胞(小鼠)使用实例
T.Hikichi,et al; Differentiation Potential of Parthenogenetic Embryonic Stem Cells Is Improved by Nuclear Transfer, Stem Cells, 2007, 25, 46-53

更多相关资料请点击文字:

BAMBANKER® 与自制冻存液的冻存效果比较

Bambanker® 与其他相关产品的比较

细胞冻存效果验证


细胞冻存液类型

1.Bambanker®

2.Medium with serum (含血清,A公司)

3.Serum-free Medium (无血清,A公司)


实验结果

*1:细胞-80℃的保存时间


BAMBANKER® 无血清细胞冻存液



相关PDF


BAMBANKER® 无血清细胞冻存液

BAMBANKER® 无血清细胞冻存液BAMBANKER® 无血清细胞

冻存液新版

BAMBANKER® 无血清细胞冻存液

BAMBANKER® 无血清细胞冻存液Wako BAMBANKER冻存液(新手册)

细胞种类列举

BAMBANKER® 无血清细胞冻存液

BAMBANKER® 无血清细胞冻存液BAMBANKER细胞冻存液

冻存解冻步骤说明

(终端).pdf

1.

Q:为什么我使用了BAMBANKER® 来保存细胞,但是存活率依然不高?

A:请冻存前确保细胞处于生长对数期,并且冻存时细胞数目控制在5×105~1×107/mL冻存  液。

2.

Q:我们实验室已经有固定的冻存程序了,换了你们的BAMBANKER® 可以还继续用原来程序降温的方法冻存吗?

A:虽然本产品可以无需程序降温冻存细胞,但如果通过程序降温盒等适当控制了温度下降的速度,效果更佳。

3.

Q:哪些细胞株(系)适合使用BAMBANKER® 来进行细胞冷冻保存?

A:几乎所有细胞株(系)都可以使用BAMBANKER® 进行冻存。对于较为宝贵的ES/iPS细胞的保存尤其适用。官网上所列举的细胞系均已经过测试验证。

但也并不排除可能有某些细胞株是不适合使用BAMBANER® 来进行冻存的,用户在没有确认是否可使用时,建议在进行正式细胞冻存之前先进行预实验。

4.

Q:无血清冻存液相比传统含血清冻存液有什么优势?

A:无血清冻存液因不含有动物血清,质量更稳定,批间差小;同时未知生物成分或感染性物质污染细胞的几率也极低,尤其对于ES/iPS细胞等有可能用于再生医疗的细胞安全得以严格保障;可以直接冻存无血清培养的细胞,免去无血清再驯化的步骤;另外BAMBANKER® 无血清细胞冻存液不需要像传统的血清冻存液需要程序降温,减少了用户的繁琐操作,节省了时间。

5.

Q:BAMBANKER® 在冷冻保存细胞的过程中起什么作用?

A:BAMBANKER® 无血清细胞冻存液使用了DMSO等作为保护剂,在冻存细胞时能以1℃/min左右的温度下降而逐渐冻结,在此过程中,细胞内的水分子被置换成冻结保护剂,抑制胞内和细胞周边的冰晶的形成,防止细胞膜和细胞器结构损伤,防止蛋白变质。

6.

Q:未使用的BAMBANKER® 无血清细胞冻存液应该如何保存?

A:2-10℃避光保存。开封后尽快使用。请注意保质期为自生产日期起24个月。

7.

Q:BAMBANKER® 能否使用于医疗领域?

A:BAMBANKER® 仅供科研使用,不能使用于人体或医疗领域。

BAMBANKER™参考文献

 

[1]

Zhang C., Seo J., Nakamura T.   (2018) Cellular Approaches in Investigating Argonaute2-Dependent RNA   Silencing. In: Okamura K., Nakanishi K. (eds) Argonaute Proteins. Methods in   Molecular Biology, vol 1680. Humana Press, New York, NY.

[2]

Sharma, A., M¨ucke, M., &   Seidman, C. E. (2018). Human induced pluripotent stem cell production and   expansion from blood using a non-integrating viral reprogramming vector.   Current Protocols in Molecular Biology,122, e58. doi: 10.1002/cpmb.58.

[3]

Souta Motoike, Mikihito Kajiya,   Nao Komatsu, et al. Cryopreserved clumps of mesenchymal stem   cell/extracellular matrix complexes retain osteogenic capacity and induce   bone regeneration. Stem Cell Res Ther. 2018; 9: 73. Published online 2018 Mar   21. doi: 10.1186/s13287-018-0826-0.

[4]

Konuma T1, Kohara C1, Watanabe   E2, et al. Monocyte subsets and their phenotypes during treatment with   BCR-ABL1 tyrosine kinase inhibitors for Philadelphia chromosome-positive   leukemia. Hematol Oncol. 2018 Apr;36(2):451-456. doi: 10.1002/hon.2497. Epub   2018 Feb 12.

[5]

Srijaya Thekkeparambil   Chandrabose, Sandhya Sriram, et al. Amenable epigenetic traits of dental pulp   stem cells underlie high capability of xeno-free episomal reprogramming.

Stem Cell Research & Therapy 2018 9:68.

[6]

Evans, Michael A. et al.   "Macrophage-Mediated Delivery of Light Activated Nitric Oxide Prodrugs with   Spatial, Temporal and Concentration Control." Chemical Science (2018): n.   pag. Web. doi:10.1039/C8SC00015H.

[7]

Jauregui, C.; Yoganarasimha, S.;   Madurantakam, P. Mesenchymal Stem Cells Derived from Healthy and Diseased   Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds.   Bioengineering 2018, 5, 8.

[8]

Khamaikawin, Wannisa et al.   Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously   Infected with HIV-1. Molecular Therapy – Methods & Clinical Development ,   Volume 9,23-32.

[9]

Masako Okumura, Toyoaki Natsume,   Masato T Kanemaki, Tomomi Kiyomitsu. Optogenetic reconstitution reveals that   Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a   multi-arm ensemble. bioRxiv 277202; doi: https://doi.org/10.1101/277202

[10]

https://labchem.wako-chem.co.jp/journal/docs/proup10.pdf<链接>

[11]

Ince T A, Aster J C. In vitro   culture conditions for T-cell acute lymphoblastic leukemia/lymphoma: U.S.   Patent 9,683,217[P]. 2017-6-20.

[12]

Morris C D, Azadnia P, de Val N,   et al. Differential Antibody Responses to Conserved HIV-1 Neutralizing   Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140   Trimers[J]. mBio, 2017, 8(1): e00036-17.<链接>

[13]

Lee K, Saetern O C, Nguyen A, et   al. Derivation of Leptomeninges Explant Cultures from Postmortem Human Brain   Donors[J]. JoVE (Journal of Visualized Experiments), 2017 (119):   e55045-e55045.<链接>

[14]

Buenrostro J D, Corces R, Wu B,   et al. Single-cell epigenomics maps the continuous regulatory landscape of   human hematopoietic differentiation[J]. bioRxiv, 2017: 109843.<链接>

[15]

Edmonds R E, Garvican E R, Smith   R K W, et al. Influence of commonly used pharmaceutical agents on equine bone   marrow‐derived mesenchymal stem cell viability[J]. Equine veterinary journal,   2017, 49(3): 352-357.<链接>

[16]

Jitraruch S, Dhawan A, Hughes R   D, et al. Cryopreservation of Hepatocyte Microbeads for Clinical   Transplantation[J]. Cell transplantation, 2017.<链接>

[17]

Usarek E, Barańczyk-Kuźma A,   Kaźmierczak B, et al. Validation of qPCR reference genes in lymphocytes from   patients with amyotrophic lateral sclerosis[J]. PloS one, 2017, 12(3):   e0174317.<链接>

[18]

Gagnon E, Connolly A, Dobbins J,   et al. Studying Dynamic Plasma Membrane Binding of TCR-CD3 Chains During   Immunological Synapse Formation Using Donor-Quenching FRET and FLIM-FRET[J].   The Immune Synapse: Methods and Protocols, 2017: 259-289.<链接>

[19]

Foster K, Chaddock J, Penn C, et   al. Non-cytotoxic protein conjugates: U.S. Patent 9,474,807[P]. 2016-10-25.

[20]

Araki N, Iida M, Machida K.   Bioassay method for detecting physiologically active substance: U.S. Patent   9,316,588[P]. 2016-4-19.

[21]

Sazinsky S, Michaelson J S,   Sathyanarayanan S, et al. Antibodies to icos: U.S. Patent Application   15/076,867[P]. 2016-3-22

[22]

李凯. Studies on Innate Immune   Activation by HBV Infection and Its Sensing Mechanism in Hepatocytes[J].   2016.

[23]

Ip L R H. Effect of INPP4B loss   on DNA repair and treatment strategies in ovarian cancer[D]. UCL (University   College London), 2016.

[24]

Thakkar A. Novel hormonal   combination therapy for triple negative breast cancer[D]. University of   Miami, 2016.

[25]

Pakdaman Y. In-vitro   characterization of STUB1 mutations in recessively inherited spinocerebellar   ataxia-16[D]. The University of Bergen, 2016.

[26]

Caxaria S. Induced pluripotent   stem cells (iPSCs) for research and therapy: induction of hepatic   differentiation in iPSCs and evaluation of their quality as a model of in   vivo development in the context of coagulation[D]. UCL (University College   London), 2016.<链接>

[27]

Bayne R A, Donnachie D J,   Kinnell H L, et al. BMP signalling in human fetal ovary somatic cells is   modulated in a gene-specific fashion by GREM1 and GREM2[J]. MHR: Basic   science of reproductive medicine, 2016, 22(9): 622-633.<链接>

[28]

Friedrich D. HIF-1 [alpha]   Drives Fungal Immunity in Human Macrophages[D]. Universität zu Lübeck,   2016.<链接>

[29]

Yasuda M, Kawabata J,   Akieda-Asai S, et al. Guanylyl cyclase C and guanylin reduce fat droplet   accumulation in cattle mesenteric adipose tissue[J]. The Journal of   Veterinary Science, 2016.<链接>

[30]

Campa M J, Moody M A, Zhang R,   et al. Interrogation of individual intratumoral B lymphocytes from lung   cancer patients for molecular target discovery[J]. Cancer Immunology,   Immunotherapy, 2016, 65(2): 171-180.<链接>

[31]

Kobayashi T, Yagi Y, Nakamura T.   Development of Genome Engineering Tools from Plant-Specific PPR Proteins   Using Animal Cultured Cells[J]. Chromosome and Genomic Engineering in Plants:   Methods and Protocols, 2016: 147-155.<链接>

[32]

Shikata H, Kaku M, Kojima S I,   et al. The effect of magnetic field during freezing and thawing of rat bone   marrow-derived mesenchymal stem cells[J]. Cryobiology, 2016, 73(1):   15-19.<链接>

[33]

Hirakawa M, Matos T, Liu H, et   al. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK   cells[J]. JCI insight, 2016, 1(18).<链接>

[34]

Durruthy-Durruthy J, Sebastiano   V, Wossidlo M, et al. The primate-specific noncoding RNA HPAT5 regulates   pluripotency during human preimplantation development and nuclear   reprogramming[J]. Nature genetics, 2016, 48(1): 44-52.<链接>

[35]

Caxaria S, Arthold S, Nathwani A   C, et al. Generation of integration-free patient specific iPS cells using   episomal plasmids under feeder free conditions[J]. Patient-Specific Induced   Pluripotent Stem Cell Models: Generation and Characterization, 2016: 355-366.<链接>

[36]

Nonomura Y, Otsuka A, Nakashima   C, et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker   of nivolumab treatment efficacy in metastatic melanoma patients[J].   Oncoimmunology, 2016, 5(12): e1248327.<链接>

[37]

Burridge P W, Diecke S, Matsa E,   et al. Modeling cardiovascular diseases with patient-specific human   pluripotent stem cell-derived cardiomyocytes[J]. Patient-Specific Induced   Pluripotent Stem Cell Models: Generation and Characterization, 2016: 119-130.<链接>

[38]

Mendonça M C P, Soares E S, de   Jesus M B, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in   Cells of the Blood–Brain Barrier: An in Vitro and in Vivo Study[J]. Molecular   pharmaceutics, 2016, 13(11): 3913-3924.<链接>

[39]

Eldaim A, Hashimoto O, Ohtsuki   H, et al. Expression of uncoupling protein 1 in bovine muscle cells[J].   Journal of animal science, 2016, 94(12): 5097-5104.<链接>

[40]

Zhen A, Rezek V, Youn C, et al.   Stem-cell based engineered immunity against HIV infection in the humanized   mouse model[J]. JoVE (Journal of Visualized Experiments), 2016 (113):   e54048-e54048.<链接>

[41]

Bastian N A, Bayne R A,   Hummitzsch K, et al. Regulation of fibrillins and modulators of TGFβ in fetal   bovine and human ovaries[J]. Reproduction, 2016, 152(2): 127-137.<链接>

[42]

Eto K, Takayama N, Nakamura S,   et al. Method for producing differentiated cells: U.S. Patent 9,200,254[P].   2015-12-1.

[43]

Eto K, Takayama N, Nakamura S,   et al. Novel Method for Producing Differentiated Cells: U.S. Patent   Application 14/925,508[P]. 2015-10-28.

[44]

Yamashita J, Takeda M.   Cd82-positive cardiac progenitor cells: U.S. Patent Application   15/308,147[P]. 2015-4-16.

[45]

Cai Y, Sugimoto C, Arainga M, et   al. Preferential Destruction of Interstitial Macrophages over Alveolar   Macrophages as a Cause of Pulmonary Disease in Simian Immunodeficiency   Virus–Infected Rhesus Macaques[J]. The Journal of Immunology, 2015, 195(10):   4884-4891.<链接>

[46]

Kojima S I, Kaku M, Kawata T, et   al. Cranial suture-like gap and bone regeneration after transplantation of   cryopreserved MSCs by use of a programmed freezer with magnetic field in   rats[J]. Cryobiology, 2015, 70(3): 262-268.<链接>

[47]

Egawa E Y, Kitamura N, Nakai R,   et al. A DNA hybridization system for labeling of neural stem cells with SPIO   nanoparticles for MRI monitoring post-transplantation[J]. Biomaterials, 2015,   54: 158-167.<链接>

[48]

Durruthy J D, Sebastiano V.   Derivation of GMP-Compliant Integration-Free hiPSCs Using Modified mRNAs[J].   Stem Cells and Good Manufacturing Practices: Methods, Protocols, and   Regulations, 2015: 31-42.<链接>

[49]

Sato Y, Sasaki T, Takahashi S,   et al. Development of a highly reproducible system to evaluate inhibition of   cytochrome P450 3A4 activity by natural medicines[J]. Journal of Pharmacy   & Pharmaceutical Sciences, 2015, 18(4): 316-327.<链接>

[50]

Burridge P W, Holmström A, Wu J   C. Chemically defined culture and cardiomyocyte differentiation of human   pluripotent stem cells[J]. Current protocols in human genetics, 2015: 21.3.   1-21.3. 15.<链接>

[51]

Käding N. Hypoxia Regulates Host   Cell Metabolism and Thereby Enhancing Clamydia Pneumonia Growth[D]. Zentrale   Hochschulbibliothek Lübeck, 2015.<链接>

[52]

Lu S. Calcium Dependent   Regulatory Mechanism in Wolfram Syndrome: A Dissertation[J]. 2015.

[53]

Garvican E R, Cree S, Bull L, et   al. Viability of equine mesenchymal stem cells during transport and   implantation[J]. Stem cell research & therapy, 2014, 5(4): 1.<链接>

[54]

Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 14/508,745[P]. 2014-10-7.

[55]

Foster K, Chaddock J, Penn C, et   al. Non-cytotoxic protein conjugates: U.S. Patent 8,778,634[P]. 2014-7-15.

[56]

Ramathal C Y, Dumuthy-Durruthy   J, Pera R A R, et al. Generation of male germ cells: U.S. Patent Application   14/904,396[P]. 2014-7-10

[57]

Ince T A. Assays, methods and   kits for analyzing sensitivity and resistance to anti-cancer drugs,   predicting a cancer patient's prognosis, and personalized treatment   strategies: U.S. Patent Application 14/894,595[P]. 2014-6-4.

[58]

Nishio M, Saeki K.   Differentiation of human pluripotent stem cells into highly functional   classical brown adipocytes[J]. Methods Enzymol, 2014, 537: 177-197.<链接>

[59]

Durruthy-Durruthy J, Briggs S F,   Awe J, et al. Rapid and efficient conversion of integration-free human   induced pluripotent stem cells to GMP-grade culture conditions[J]. PloS one,   2014, 9(4): e94231.<链接>

[60]

Koido S, Homma S, Okamoto M, et   al. Treatment with Chemotherapy and Dendritic Cells Pulsed with Multiple   Wilms' Tumor 1 (WT1)–Specific MHC Class I/II–Restricted Epitopes for   Pancreatic Cancer[J]. Clinical Cancer Research, 2014, 20(16):   4228-4239.<链接>

[61]

Patz Jr E F. Antibodies   Expressed by Intratumoral B Cells as the Basis for a Diagnostic Test for Lung   Cancer[R]. DUKE UNIV DURHAM NC, 2014.<链接>

[62]

Kaku M, Shimasue H, Ohtani J, et   al. A case of tooth autotransplantation after long-term cryopreservation   using a programmed freezer with a magnetic field[J]. The Angle Orthodontist,   2014, 85(3): 518-524.<链接>

[63]

Kaku M, Koseki H, Kojima S, et   al. Cranial bone regeneration after cranioplasty using cryopreserved   autogenous bone by a programmed freezer with a magnetic field in rats[J].   CryoLetters, 2014, 35(6): 451-461.<链接>

[64]

Koido S, Kinoshita S, Mogami T,   et al. Immunological assessment of cryotherapy in breast cancer patients[J].   Anticancer research, 2014, 34(9): 4869-4876.<链接>

[65]

Sazuka S, Katsuno T, Nakagawa T,   et al. Fibrocytes are involved in inflammation as well as fibrosis in the   pathogenesis of Crohn's disease[J]. Digestive diseases and sciences, 2014,   59(4): 760-768.<链接>

[66]

Lin S L, Lee S Y, Lin Y C, et   al. Evaluation of mechanical and histological properties of cryopreserved   human premolars under short-term preservation: A preliminary study[J].   Journal of Dental Sciences, 2014, 9(3): 244-248.<链接>

[67]

Poole E, Reeves M, Sinclair J H.   The use of primary human cells (fibroblasts, monocytes, and others) to assess   human cytomegalovirus function[J]. Human Cytomegaloviruses: Methods and   Protocols, 2014: 81-98.<链接>

[68]

Garvican E R, Dudhia J, Alves A   L, et al. Mesenchymal stem cells modulate release of matrix proteins from   tendon surfaces in vitro: a potential beneficial therapeutic effect[J].   Regenerative medicine, 2014, 9(3): 295-308.<链接>

[69]

Skinner J A, Zurawski S M,   Sugimoto C, et al. Immunologic characterization of a rhesus macaque H1N1   challenge model for candidate influenza vaccine assessment[J]. Clinical and   Vaccine Immunology, 2014: CVI. 00547-14.<链接>

[70]

Terunuma H, Deng X, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 14/780,394[P]. 2013-3-27.

[71]

Cho M, Yamazaki T, Endo M, et   al. Anti-Phospholipase D4 Antibody: U.S. Patent Application 14/375,266[P].   2013-1-31.

[72]

Bhandari S. Radiological,   clinical and laboratory based studies in the pathogenesis of desmoid tumours   in familial adenomatous polyposis[J]. 2013.

[73]

Gonzàlez Juncà A. Study of   molecular mechanisms implicated in the TGF-beta oncogenic effect in   Glioma[J]. 2013.

[74]

Koseki H, Kaku M, Kawata T, et   al. Cryopreservation of osteoblasts by use of a programmed freezer with a   magnetic field[J]. CryoLetters, 2013, 34(1): 10-19.<链接>

[75]

Naito H, Yoshimura M, Mizuno T,   et al. The advantages of three‐dimensional culture in a collagen hydrogel for   stem cell differentiation[J]. Journal of Biomedical Materials Research Part   A, 2013, 101(10): 2838-2845.<链接>

[76]

Stec M, Baran J, Szatanek R, et   al. Properties of monocytes generated from haematopoietic CD34+ stem cells   from bone marrow of colon cancer patients[J]. Cancer Immunology,   Immunotherapy, 2013, 62(4): 705-713.<链接>

[77]

Müller L, Brighton L E, Carson J   L, et al. Culturing of human nasal epithelial cells at the air liquid   interface[J]. Journal of visualized experiments: JoVE, 2013 (80).<链接>

[78]

Kalaszczynska I, Ruminski S,   Platek A E, et al. Substantial differences between human and ovine   mesenchymal stem cells in response to osteogenic media: how to explain and   how to manage?[J]. BioResearch open access, 2013, 2(5): 356-363.<链接>

[79]

Tamai Y, Hasegawa A, Takamori A,   et al. Potential Contribution of a Novel Tax Epitope–Specific CD4+ T Cells to   Graft-versus-Tax Effect in Adult T Cell Leukemia Patients after Allogeneic   Hematopoietic Stem Cell Transplantation[J]. The Journal of Immunology, 2013,   190(8): 4382-4392.<链接>

[80]

Kasai K, Nakashima H, Liu F, et   al. Toxicology and biodistribution studies for MGH2. 1, an oncolytic virus   that expresses two prodrug-activating genes, in combination with prodrugs[J].   Molecular Therapy-Nucleic Acids, 2013, 2: e113.<链接>

[81]

Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 13/980,777[P]. 2012-1-17.

[82]

Somm E, Bonnet N, Martinez A, et   al. A botulinum toxin–derived targeted secretion inhibitor downregulates the   GH/IGF1 axis[J]. The Journal of clinical investigation, 2012, 122(9):   3295.<链接>

[83]

Takaoka E, Sonobe H, Akimaru K,   et al. Multiple sites of highly amplified DNA sequences detected by molecular   cytogenetic analysis in HS-RMS-2, a new pleomorphic rhabdomyosarcoma cell   line[J]. American journal of cancer research, 2012, 2(2): 141.<链接>

[84]

Fahlbusch F B, Dawood Y, Hartner   A, et al. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated   via oxygen tension: implications for intrauterine growth restriction?[J]. The   Journal of Maternal-Fetal & Neonatal Medicine, 2012, 25(11): 2209-2215.<链接>

[85]

Aloé S, Weber F, Behr B, et al.   Modulatory effects of bovine seminal plasma on uterine inflammatory   processes[J]. Reproduction in domestic animals, 2012, 47(1): 12-19.<链接>

[86]

Gupta A, Bhakta S. An integrated   surrogate model for screening of drugs against Mycobacterium tuberculosis[J].   Journal of antimicrobial chemotherapy, 2012, 67(6): 1380-1391.<链接>

[87]

Saeki K. Feeder-Free Culture for   High Efficiency Production of Subculturable Vascular Endothelial Cells from   Human Embryonic Stem Cells[J]. Human Embryonic and Induced Pluripotent Stem   Cells: Lineage-Specific Differentiation Protocols, 2012: 277-294.<链接>

[88]

Yamazaki T, Okabe H, Kobayashi   S, et al. Cancer stem cell mass and process for production thereof: U.S.   Patent Application 13/878,181[P]. 2011-10-6.

[89]

Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood product: U.S. Patent Application   13/577,476[P]. 2011-2-4.

[90]

Sugii S, Kida Y, Berggren W T,   et al. Feeder-independent ips cell derivation from human and mouse adipose   stem cells[J]. Nature protocols, 2011, 6(3): 346.<链接>

[91]

Shinada T, Akimoto T, Zhu Y, et   al. Modulation of viability of live cells by focused ion‐beam exposure[J].   Biotechnology and bioengineering, 2011, 108(1): 222-225.<链接>

[92]

Huang M S, Chang W J, Huang H M,   et al. Effects of transportation time after extraction on the magnetic   cryopreservation of pulp cells of rat dental pulp[J]. Journal of Dental   Sciences, 2011, 6(1): 48-52.<链接>

[93]

Sato D, Suzuki Y, Kano T, et al.   Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse   therapy in IgA nephropathy patients[J]. Nephrology Dialysis Transplantation,   2011, 27(3): 1090-1097.<链接>

[94]

Kamada H, Kaku M, Kawata T, et   al. In-vitro and in-vivo study of periodontal ligament cryopreserved with a   magnetic field[J]. American Journal of Orthodontics and Dentofacial   Orthopedics, 2011, 140(6): 799-805.<链接>

[95]

Bui H T, Wakayama S, Mizutani E,   et al. Essential role of paternal chromatin in the regulation of   transcriptional activity during mouse preimplantation development[J].   Reproduction, 2011, 141(1): 67-77.<链接>

[96]

Takata Y, Kishine H, Sone T, et   al. Generation of iPS cells using a BacMam multigene expression system[J].   Cell structure and function, 2011, 36(2): 209-222.<链接>

[97]

Benko Z, Zhao R Y. Zeocin for   selection of bleMX6 resistance in fission yeast[J]. Biotechniques, 2011,   51(1): 57-60.<链接>

[98]

Abedini S, Kaku M, Kawata T, et   al. Effects of cryopreservation with a newly-developed magnetic field   programmed freezer on periodontal ligament cells and pulp tissues[J].   Cryobiology, 2011, 62(3): 181-187.<链接>

[99]

Oshima-Sudo N, Li Q, Hoshino Y,   et al. Optimized method for culturing outgrowth endothelial progenitor   cells[J]. Inflammation and Regeneration, 2011, 31(2): 219-227.<链接>

[100]

Araki N. Bioassay method for   antibody against thyroid-stimulating hormone receptor, measurement kit for   the antibody, and novel genetically modified cell for use in the bioassay   method or the measurement kit: U.S. Patent Application 13/381,402[P]. 2010-6-24.

[101]

Foster K, Chaddock J, Marks P,   et al. Fusion proteins: U.S. Patent 7,659,092[P]. 2010-2-9.

[102]

Mieno S, Boodhwani M, Robich M   P, et al. Effects of diabetes mellitus on VEGF‐induced proliferation response   in bone marrow derived endothelial progenitor cells[J]. Journal of cardiac   surgery, 2010, 25(5): 618-625.<链接>

[103]

Kaku M, Kamada H, Kawata T, et   al. Cryopreservation of periodontal ligament cells with magnetic field for   tooth banking[J]. Cryobiology, 2010, 61(1): 73-78.<链接>

[104]

Kawata T, Kaku M, Fujita T, et   al. Water molecule movement by a magnetic field in freezing for tooth   banking[J]. Biomedical Research, 2010, 21(4).<链接>

[105]

Lee S Y, Chiang P C, Tsai Y H,   et al. Effects of cryopreservation of intact teeth on the isolated dental   pulp stem cells[J]. Journal of Endodontics, 2010, 36(8): 1336-1340.<链接>

[106]

Huang Y H, Yang J C, Wang C W,   et al. Dental stem cells and tooth banking for regenerative medicine[J].   Journal of Experimental & Clinical Medicine, 2010, 2(3):   111-117.<链接>

[107]

Kwon H J, Enomoto T, Shimogawara   M, et al. Benchmarks[J]. Biotechniques, 2010, 48: 460-462.<链接>

[108]

Shimizu Y, Takamori A,   Utsunomiya A, et al. Impaired Tax‐specific T‐cell responses with insufficient   control of HTLV‐1 in a subgroup of individuals at asymptomatic and smoldering   stages[J]. Cancer science, 2009, 100(3): 481-489.<链接>

[109]

Park H S, Cho S G, Park M J, et   al. Bone marrow T cells are superior to splenic T cells to induce chimeric   conversion after non-myeloablative bone marrow transplantation[J]. The Korean   journal of internal medicine, 2009, 24(3): 252.<链接>

[110]

Enosawa S, Miyamoto Y, Ikeya T.   Frozen cell immobilized product, primary hepatocyte culture tool, and method   for producing primary hepatocyte culture tool: U.S. Patent Application   12/738,809[P]. 2008-9-11.

[111]

DePinho R A, Stommel J M.   Receptor tyrosine kinase profiling: U.S. Patent Application 12/450,820[P].   2008-4-11.

[112]

Mieno S, Clements R T, Boodhwani   M, et al. Characteristics and Function of Cryopreserved Bone Marrow–Derived   Endothelial Progenitor Cells[J]. The Annals of thoracic surgery, 2008, 85(4):   1361-1366.<链接>

[113]

Warren C. The Response of HN4   Cells to Porphyromonas gingivalis DNA[D]. , 2008.

[114]

Hikichi T, Wakayama S, Mizutani   E, et al. Differentiation potential of parthenogenetic embryonic stem cells   is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接>

[115]

Zaidi S K, Pande S, Pratap J, et   al. Runx2 deficiency and defective subnuclear targeting bypass senescence to   promote immortalization and tumorigenic potential[J]. Proceedings of the   National Academy of Sciences, 2007, 104(50): 19861-19866.<链接>

[116]

Hikichi T, Wakayama S, Mizutani   E, et al. Differentiation potential of parthenogenetic embryonic stem cells   is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接>

[117]

Liu D G, Kobayashi T, Onishi A,   et al. Relation between human decay‐accelerating factor (hDAF) expression in   pig cells and inhibition of human serum anti‐pig cytotoxicity: value of   highly expressed hDAF for xenotransplantation[J]. Xenotransplantation, 2007,   14(1): 67-73.<链接>

[118]

Ishii H, Iinuma A, Osumi K, et   al. Canine tumor treatment method, pharmaceutical formulation applied   thereto, and method of cryogenically preserving cells used therewith: U.S.   Patent Application 11/465,892[P]. 2006-8-21.

[119]

Hatoya S, Sugiyama Y, Torii R,   et al. Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC   of canine oocytes[J]. Theriogenology, 2006, 66(5): 1083-1090.<链接>

[120]

Sasaki M, Kato Y, Yamada H, et   al. Development of a novel serum‐free freezing medium for mammalian cells   using the silk protein sericin[J]. Biotechnology and applied biochemistry,   2005, 42(2): 183-188.<链接>

[121]

Haynes J E. Pseudonyms of   Authors: Including Anonyms and Initialisms[M]. JE Haynes, 1882.<链接>

葡糖酸激酶[大肠杆菌] Gluconokinase (Gluconate kinase) 货号:E-GLUKEC Megazyme中文站

葡糖酸激酶[大肠杆菌]

英文名:Gluconokinase (Gluconate kinase)

货号:E-GLUKEC

规格:1500 Units

High purity recombinant Gluconokinase (Gluconate kinase) (E. coli) for use in research, biochemical enzyme assays andin vitro diagnostic analysis.

EC 2.7.1.12

Recombinant from E. coli. 
In 3.2 M ammonium sulphate.

Specific activity: ~ 180 U/mg (25oC, pH 8.0).

Stable at 4oC for > 2 years.

暂无问题解答

暂无视频