氨基甙类抗生物质


产品编号 产品名称 产品规格 产品等级 产品价格
073-02971 Gentamicin Sulfate 正泰霉素 250mg
079-02973 Gentamicin Sulfate 正泰霉素 1g
077-02974 Gentamicin Sulfate 正泰霉素 5g
071-02972 Gentamicin Sulfate 正泰霉素 25g
117-00341 Kanamycin Sulfate 硫酸卡那霉素 1g
113-00343 Kanamycin Sulfate 硫酸卡那霉素 5g
115-00342 Kanamycin Sulfate 硫酸卡那霉素 25g
111-00344 Kanamycin Sulfate 硫酸卡那霉素 100g
146-08871 Neomycin Sulfate 硫酸新霉素 50g
196-08511 Streptomycin Sulfate 链霉素硫酸盐 5g
194-08512 Streptomycin Sulfate 链霉素硫酸盐 25g
192-08513 Streptomycin Sulfate 链霉素硫酸盐 100g
198-08515 Streptomycin Sulfate 链霉素硫酸盐 500g
014-24941 Amikacin Sulfate 硫酸阿米卡星 1g
010-24943 Amikacin Sulfate 硫酸阿米卡星 5g
187-02901 Ribostamycin Sulfate 硫酸核糖霉素 250mg
183-02903 Ribostamycin Sulfate 硫酸核糖霉素 1g

氨基甙类抗生物质

◆正泰霉素(Gentamicin   Sulfate)


CAS No. 1405-41-0

滴定度:(作为庆大霉素 C1 )590μg/mg 以上(干燥物换算)

可溶性溶剂:水

用途(作用):氨基糖苷类抗生物质。和细菌核糖体30s和50s结合,抑制蛋白质合成。对革兰阳性·阴性菌有很强杀菌作用。

氨基甙类抗生物质

◆硫酸卡那霉素(Kanamycin Sulfate)


CAS No. 25389-94-0

C18H36N4O11・nH2SO4(C18H36N4O11=484.50)

力価:600μg/mg 以上(干燥物换算)

可溶性溶剂:水

用途(作用):氨基糖苷类抗生物质。和细菌核糖体30s和50s结合,抑制蛋白质合成。对革兰阳性·阴性菌有很强杀菌作用。

氨基甙类抗生物质

◆硫酸新霉素(Neomycin   Sulfate)


CAS No. 1405-10-3

C23H46N6O13・nH2SO4(C23H46N6O13=614.64)

滴定度:680 IU/mg 以上(干燥物换算)

可溶性溶媒:水

用途(作用):氨基糖苷类抗生物质。和细菌核糖体30s结合,抑制蛋白质合成。对革兰阳性·阴性菌有很强杀菌作用。

氨基甙类抗生物质

◆链霉素硫酸盐(Streptomycin   Sulfate)

CAS No. 3810-74-0

C21H39N7O12・1.5H2SO4=728.69

滴定度:718μg/mg 以上(干燥物换算)

可溶性溶剂:水

用途(作用):氨基糖苷类抗生物质。和细菌核糖体30s结合,抑制蛋白质合成。对革兰阳性·阴性菌有很强杀菌作用。

氨基甙类抗生物质

◆硫酸阿米卡星(Amikacin   Sulfate)

CAS No. 39831-55-5

C22H43N5O13・2H2SO4=781.76

滴定度:674 ~ 786 IU/mg(干燥物换算)

可溶性溶剂:水

用途(作用):氨基糖苷类抗生物质。和细菌核糖体30s结合,抑制蛋白质合成。对绿脓杆菌有很强杀菌作用。

氨基甙类抗生物质

◆硫酸核糖霉素(Ribostamycin   Sulfate)

CAS No. 53797-35-6

C17H34N4O10・nH2SO4(C17H34N4O10=454.47)

滴定度:680 ~ 780μg/mg 以上(干燥物换算)

可溶性溶剂:水

用途(作用):氨基糖苷类抗生物质。和细菌核糖体30s结合,抑制蛋白质合成。对革兰阳性·阴性菌有很强杀菌作用。

氨基甙类抗生物质

 

相关资料详情请查看:http:///pdf/show/80.html



Phos-tag™ 生物素


产品编号 产品名称 产品规格 产品等级 产品价格
301-93531 Phos-tag™ Biotin BTL-104
 Phos-tag 生物素
10mg
308-97201 Phos-tag™ Biotin BTL-111 1mM Aqueous Solution
 Phos-tag 生物素1mM水溶液
0.1mL

Phos-tag™ BiotinPhos-tag™ 生物素

无特异性磷酸化抗体时的最佳选择!

  Phos-tag™ Biotin是与生物素结合的Phos-tag™,可用于免疫印迹法检测磷酸化蛋白。Phos-tag™ Biotin BTL-104和BTL-105可灵敏检测PVDF膜上的磷酸化蛋白。



Phos-tag™ 生物素



优点、特色


  无辐射。

  无需PVDF膜的封闭处理。

  Phos-tag™ 的特异性结合与氨基酸种类、序列无关。

  可适用于免疫印迹和质谱分析等后续工作

   Phos-tag™ BTL母液可稳定保存至少6个月。

  实验流程与使用HRP标记抗体相类似


※BTL-104、BTL-105、BTL-111三者连接链(Linker)长度不一,但使用上基本相同。BTL-111灵敏度最高。



案例、应用


【使用例:在PVDF 膜上检测磷酸化蛋白】


Phos-tag™ 生物素


  转印在PVDF 膜上的磷酸化蛋白可精确检测到ng级水平,没有检测到相应的去磷酸化蛋白与非磷酸化蛋白的信号斑点。

  免疫印迹检测磷酸化蛋白——Phos-tag ™ 生物素。

  摘自Eiji Kinoshita ,et al., Mol.Cel.Proteomics (2006) 5: 749


【使用例:Phos-tag™ 生物素在检测蛋白激酶活性的微阵列(生物芯片)中的运用


  蛋白激酶是很多疾病诊断和药物筛选的靶标。近来有科研人员研发了一种检测胞内蛋白激酶活性的高灵敏度多肽微阵列。用微阵列点样机点样2nL体积的底物多肽溶液,使多肽固定在戊二醛预修饰的高氨基末端载玻片。

  当多肽经细胞裂解液磷酸化后,用荧光标记的抗phosphotyrosine(磷酸化酪氨酸)抗体检测酪氨酸激酶,或者用Phos-tag™ 生物素,接着用荧光标记的亲和素检测丝氨酸或者苏氨酸激酶。之后用自动微阵列扫描仪检测荧光信号。多肽微阵列系统包括简单的多肽固定,只需少量样品,具有高密度阵列。重要的是,检测细胞裂解液蛋白激酶活性的灵敏度高。

  因此多肽微阵列系统可用于高通量筛选细胞内激酶活性,可用于药物筛选和疾病诊断。

Phos-tag™ 系列

磷酸化蛋白新方法!

  Phos-tag™是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™Agarose)及质谱分析MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。


Phos-tag™ 的基本结构:

Phos-tag™ 生物素

特点:

与-2价磷酸根离子的亲和性和选择性高于其它阴离子

在pH 5-8的生理环境下生成稳定的复合物

原理


Phos-tag™ 生物素

相关应用


Phos-tag™ 生物素

相关产品

 产品名称

 用  途

 Phos-tag™ Acrylamide

 分离: SDS – PAGE 分离不同磷酸化水平的蛋白

 SuperSep Phos-tag™

 分离: 预制胶中含有50μM Phos-tag™ Acrylamide

 Phos-tag™ Biotin

 检测: 代替 Western Blot 检测中的磷酸化抗体

 Phos-tag™ Agarose

 纯化: 通用柱层析,纯化磷酸化蛋白

 Phos-tag™ Mass

 Analytical Kit

 分析: 用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度


phos-tag™由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:http://phos-tag.jp

Phos-tag™ 生物素

Phos-tag 第5版说明书


Phos-tag™ 生物素

Phos-tag系列 ver 5

Phos-tag™ 生物素

Phos-tag生物素操作手册

Phos-tag™ 生物素

说明书


Q: BTL-104和BTL-111的区别?

A: BTL-104的溶解度更高,BTL-111的灵敏度更高。

 

Q: 检测灵敏度达到什么水平?

A: 可达到ng级别。需要使用化学发光试剂,比如ImmunoStar LD(Wako)。

 

Q: 使用该产品还需要别的试剂或则耗材吗?

A: 硝酸锌(Zn(NO3)2)溶液和亲和素标记的HRP((GE Healthcare Bio-Sciences:       RPN1231)。制备Phos-tag™生物素与亲和素标记的HRP偶联物时需要使用离心过  滤装置(NMWL = 30,000, Nanosep™ 30K, Pall Life Sciences).

 

Q: Phos-tag生物素使用的次数?

A: 主要决定于使用次数和使用量,以下实验次数仅作参考:

     BTL-104:130~1300次;

      BTL-111 1mM溶液:10~100次。

 

Q: 可测定磷酸化蛋白?

A: 根据条带的浓度,可进行半定量分析。

 

Q: 能够确定结合磷酸化基团的数目?

A: 不能。


Q: 能否剥除(strip)Phos-tag™生物素?

A: 可以。与含有62.5mM Tris-HCl(pH6.8),2%(w/v)SDS和0.1M 2-巯基乙醇溶液  混合后,震荡15分钟。用1×TBS-T洗涤3次,每次10分钟。

 

Q: 推荐使用哪种膜?

A: 建议使用PVDF膜。

 

Q: 使用Phos-tag™ 生物素是否需要封闭?

A: 不需要。封闭会降低检测灵敏度。

【参考文献】


·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016, 83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J]. Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J]. Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016, 60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J]. Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J]. Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J]. PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J]. Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016, 143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016, 12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J]. Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J]. Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J]. Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J]. Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.

References on Phos-tag™ Chemistry

  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

  • Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

  • Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

  •  Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

  • Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

  • Detection and Quantification of On-Chip Phosphorylated Peptides by Surface Plasmon Resonance Imaging Techniques Using a Phosphate Capture MoleculeAnalytical Chemistry77, 3979-3985 (2005), K. Inamori, M. Kyo, Y. Nishiya, Y. Inoue, T. Sonoda, E. Kinoshita, T. Koike, and Y. Katayama

  • Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike

  • Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pHProteomics, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike

  • Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis, Analytical Biochemistry360, 160-162 (2007), S. Yamada, H. Nakamura, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and Y. Shiro

  • Label-free kinase profiling using phosphate-affinity polyacrylamide gel electrophresisMolecular & Cellular Proteomics, 6, 356-366 (2007), E. Kinoshita-Kikuta, Y. Aoki, E. Kinoshita, and T. Koike

  • A SNP genotyping method using phosphate-affinity polyacrylamide gel electrophoresis, Analytical Biochemistry361, 294-298 (2007), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn2+.Phos-tag.)

  • Identification on Membrane and Characterization of Phosphoproteins Using an Alkoxide-Bridged Dinuclear Metal Complex as a Phosphate-Binding Tag MoleculeJournal of Biomolecular Techniques18, 278-286 (2007), T. Nakanishi, E. Ando, M. Furuta, E. Kinoshita, E. Kikuta-Kinoshita, T. Koike, S. Tsunasawa, and O. Nishimura

  • A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresisAnalytical Biochemistry378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate- affinity SDS-PAGEProteomics, 8, 2994-3003 (2008), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, S. Yamada, H. Nakamura, Y. Shiro, Y. Aoki, K. Okita, and T. Koike

  • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathwayNature Structural & Molecular Biology15, 1138-1146 (2008), M. Ishiai, H. Kitao, A. Smogorzewska, J. Tomida, A. Kinomura, E. Uchida, A. Saberi, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, S. Tashiro, S. J. Elledge, and M. Takata

  • to Page top

  • Two-dimensional phosphate affinity gel electrophoresis for the analysis of phosphoprotein isotypes Electrophoresis30, 550-559 (2009), E. Kinoshita, E. Kinoshita-Kikuta, M. Matsubara, Y. Aoki, S. Ohie, Y. Mouri, and T. Koike

  • Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leavesBioscience, Biotechnology, and Biochemistry,73, 1293-300 (2009), T. Tanaka, G. Horiuchi, M. Matsuoka, K. Hirano, A. Tokumura, T. Koike, and K. Satouchi

  • A Phos-tag-based fluorescence resonance energy transfer system for the analysis of the dephosphorylation of phosphopeptidesAnalytical Biochemistry388, 235-241, (2009), K. Takiyama, E. Kinoshita, E. Kinoshita-Kikuta, Y. Fujioka, Y. Kubo, and T. Koike

  • Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysatesAnalytical Biochemistry389, 83-85, (2009), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike

  • Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agaroseProteomics9, 4098- 4101 (2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Ujihara, and T. Koike

  • Separation and detection of large phosphoproteins using Phos-tag SDS-PAGENature Protocols4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

  • A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tagRapid Communications in Mass Spectrometry24, 1075-1084 (2010), J. Morishige, M. Urikura, H. Takagi, K. Hirano, T. Koike, T. Tanaka, and K. Satouchi

  • Genotyping and mapping assay of single-nucleotide polymorphisms in CYP3A5 using DNA-binding zinc(II) complexesClinical Biochemistry43, 302-306 (2010), E. Kinoshita, E. Kinoshita-Kikuta, H. Nakashima, and T. Koike

  • The DNA-binding activity of mouse DNA methyltransferase 1 is ragulated phosphorylation with casein kinase 1σ/εBiochemical Journal427, 489-497 (2010), Y. Sugiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita


葡聚糖硫酸钠盐MW:36000-50000

上海金畔生物科技有限公司提供葡聚糖硫酸钠盐MW:36000-50000

(DextransulfatesodiumsaltMW:36000-50000)

分子结构:

品牌:美国MPBiomedicals

性状:白色或灰白色粉末

描述:葡聚糖硫酸钠盐(分子量36000-50000)为MP独家产品,是葡聚糖的聚阴离子衍生物,由葡聚糖和氯磺酸的酯化反应形成。其中含硫量约为17%,相当于葡聚糖分子的每个葡萄糖残糖中平均含1.9个硫酸基团。

重要用途:

提高核酸杂交率-溶液中含10%的硫酸葡聚糖,DNA链的再退火率约增加10倍,这一

现象进一步扩大了单链或双链的探针与固定在膜上的DNA/RNA的杂交率。不仅如此,添加10%硫酸葡聚糖也许会增加随机切割的双链DNA探针与固定化核酸的杂交率,高达100倍。

显示免疫相关的活动:

(1)体液免疫的增强和抑制;

(2)B淋巴细胞的多克隆活化作用,甚至可以刺激未成熟的B细胞;

(3)胸腺细胞反应中,促使转化成凝集素;

(4)抑制血液凝固和血小板聚集;

(5)增强血纤维蛋白溶解活性;

(6)增强/抑制细胞介导的免疫应答;

沉淀低密度(LDL)和极低密度(VDLD)脂蛋白(小鼠结肠炎模型建立)-Mg2+存

在的条件下,硫酸葡聚糖沉淀人血清中的低密度脂蛋白,上清液中留下高密度脂蛋白。利用硫酸葡聚糖的沉淀作用去除脂蛋白这一功能同样可以用来纯化其他材料,如β-2-糖蛋白。

作为佐剂发挥作用;

溶解度:

溶于水(100mg/ml-澄清或者轻微模糊的黄色溶液,高分子量的产品在水中的溶解度没有低分子量强)。灭菌前水溶液应配成缓冲体系(如碳酸氢钠),防止降解。

更多产品,更多优惠,请联系我们!
上海金畔生物科技有限公司
地 址: 上海市浦东新区东靖路699弄36栋701室
邮 编: 201208
固话总机:
订货热线:15221999938
网 址: www.jinpanbio.com
金畔博客:www.jinpanbio.cn
Email:sales@jinpanbio.com

合成·反应装置ケミスト广场CPG – 2000系列用Φ15×105试管适配器集2套入|柴田科技有限公司-环境检测设备、科学仪器的制造销售

产品详细

科学仪器

合成·反应装置ケミスト广场CPG – 2000系列用Φ15×105试管适配器集2套入

合成·反应装置ケミスト广场CPG - 2000系列用Φ15×105试管适配器集2套入|柴田科技有限公司-环境检测设备、科学仪器的制造销售

  • 合成·反应装置ケミスト广场CPG - 2000系列用Φ15×105试管适配器集2套入|柴田科技有限公司-环境检测设备、科学仪器的制造销售

商品代码其他情报(式样)

这个产品比较表中追加
产品照片 合成·反应装置ケミスト广场CPG - 2000系列用Φ15×105试管适配器集2套入|柴田科技有限公司-环境检测设备、科学仪器的制造销售
商品代码 054320 – 215105
型式
价格(不含税) 120万日元。

上海金畔生物科技有限公司

659%2F%3Fc%3D34& ” 659%2F%3Fc%3D34&

胰蛋白酶EDTA溶液(无酚红), AF


产品编号 产品名称 产品规格 产品等级 产品价格
203-20251 Trypsin-EDTA Solution without Phenol Red, AF 100ml 细胞培养用
207-20271 Trypsin-EDTA Solution(High Trypsin) without Phenol Red, AF* 100ml 细胞培养用

无动物源胰蛋白酶EDTA胰蛋白酶EDTA溶液(无酚红), AF



  本品是已经过病原体、内毒素和无菌检测的胰蛋白酶EDTA溶液,可用于贴壁细胞的剥离、各组织的细胞分散等。

  本品以重组胰蛋白酶为原料,不含动物源物质,无需担心病毒污染,能让您更安心地进行实验。使用方法与0.05%胰蛋白酶-EDTA溶液一样。


◆特点:


 ● 不含动物源物质

 ● 高细胞剥离率,剥离后细胞生存率高

 

●产品规格项目:

规格

外观

pH

渗透压

无菌试验

内毒素测试

支原体检查

应用试验
  (Vero
细胞在10分钟后完全剥离,高达90%以上的细胞存活率)


●细胞剥离能力:


胰蛋白酶EDTA溶液(无酚红), AF

[培养条件]

细胞:MDCK细胞

培养基:E-MEM+10%FBS

接种细胞数 : 5.0×104cells/cm2

培养方法 :静置培养

培养器材: 12孔板

培养环境 : 37℃, 5% CO2, 4天

培养后、37℃, 5% CO2条件下处理15分钟,测定剥离细胞数。

→与其他产品相比有更好的细胞剥离率。

●继代培养时的影响:


胰蛋白酶EDTA溶液(无酚红), AF

[培养条件]

细胞:MDCK细胞

培养基 : E-MEM+10% FBS

接种细胞数 : 3.0×105cells

培养方法 : 静置培养

培养器材 : T25瓶

培养环境 : 37℃, 5% CO2

37℃, 5% CO2条件下进行15分钟胰蛋白酶处理后,进行继代培养

→细胞增殖不受本品影响。

查看相关产品请看相关资料


◆ 相关产品:


● 胰蛋白酶EDTA(使用猪细小病毒原料)


产品编号.

产品名称

规格

包装

202-16931

0.05w/v% Trypsin-0.53mmol/l EDTA・4Na Solution

with Phenol Red

0.05w/v% 胰蛋白酶-0.53mmol/l EDTA . 4Na溶液和酚红

细胞培养用

100ml

204-16935

500ml

209-16941

0.25w/v% Trypsin-1mmol/l EDTA・4Na Solution

with Phenol Red

100ml

201-16945

500ml

206-17291

0.5w/v% Trypsin-5.3mmol/l EDTA・4Na Solution

with Phenol Red (×10)

100ml

208-17251

0.5w/v% Trypsin-5.3mmol/l EDTA・4Na Solution

without Phenol Red (×10)

100ml

 

重组胰蛋白酶

生产商

产品编号

生产编号

产品名称

包装

Roche   Diagnostics

罗氏诊断

631-24973

06369880103

Trypsin,Porcine,recombinant(Pichia   pastoris),GMP Grade

1g

635-24971

03358658103

3.5MU

上海金畔生物科技有限公司提供MPBIO现货促销

上海金畔生物科技有限公司提供MPBIO现货促销

序号 名 称 中文品名 产品代码 型号规格

1 7X CLEANING SOLUTION 7X清洁剂 97667098 55GAL
2 7X CLEANING SOLUTION 7X清洁剂 97667093 1GAL
3 7X CLEANING SOLUTION 7X清洁剂 97667094 4X1GAL
4 es 7x celaning solution 7X清洗剂 97667194 4x1gal
5 1/4 CERAMIC SPHERE 陶瓷球 116540424 100/BAG
6 1/4 CERAMIC SPHERE 陶瓷球 116540034 50/PK
7 10X PBS CAL MAG FREE 试剂液 91960454 1X500ML
8 1X PBS DLBECCOS CMF 磷酸盐缓冲液 91860449 EA
9 ACID FUCHSIN CALCIUM SALT 酸性品红 215260025 25GM
10 ALGINIC ACID 海藻酸 215472380 100 g
11 ALIZARIN RED S MONOHYDRATE 茜素红 210037580 100GM
12 AMMONIUM CHLORIDE 氯化铵 215010980 100GM
13 AMMONIUM CHLORIDE 氯化铵 215010991 1 kg
14 AMMONIUM SULFATE ULTRA PURE 硫酸铵超纯 4808229 5KG
15 AMMONIUM SULFATE ULTRA PURE 硫酸铵超纯 4808211 1KG
16 YNB W AMMONIUM SULFATE 硫酸铵 114027532 1KG
17 BETA CYCLODEXTRIN 环状糊精 219005325 25GM
18 BORIC ACID  硼酸 2194810.5 500g
19 BORIC ACID 硼酸 219481001 1KG
20 CALCIUM CHLORIDE 氯化钙 215350280 100GM
21 CALCIUM CHLORIDE 氯化钙 215350291 1KG
22 CARBOXYMETHYL CELLULOSE SODIU 羧甲基纤维素 215056190 500GM
23 CARBOXYMETHYL CELLULOSE SODIU 羧甲基纤维素 210127890 500GM
24 CARBOXYMETHYL CELLULOSE SODIUM SALT 羧甲基纤维素钠 215056090 500GM
25 CESIUM CHLORIDE 氯化铯 215058990 500GM
26 CESIUM CHLORIDE 氯化铯 4813069 1KG
27 DEXTRAN NW 40000 葡萄聚糖 210150580 100GM
28 DEXTRAN SODIUM SULFATE 硫酸钠葡聚糖 216011080 100g
29 DEXTRAN SODIUM SULFATE 硫酸钠葡聚糖 216011090 500 g
30 DEXTRAN SODIUM SULFATE 硫酸钠葡聚糖 216011010 10GM
31 DEXTRAN SODIUM SULFATE 硫酸钠葡聚糖 216011050 50GM
32 DIMETHYL SULFOXIDE 二甲亚砜 219605580 100ML
33 DIMETHYL SULFOXIDE 二甲亚砜 219018690 500ML
34 DIMETHYL SULFOXIDE 二甲亚砜 219605590 500ML
35 DIMETHYL SULFOXIDE,ACS 二甲亚砜 219141880 100ml
36 DL-METHIONINE 蛋氨酸 219470680 100GM
37 D-SORBITAL D-山梨醇 219485194 5kg
38 D-SORBITOL  D-山梨醇 2194742.5 500 g
39 ETBR GREENBAG DISPOSAL KIT 溴化乙锭试剂盒 112350200 50BAGS
40 ETHIDIUM BROMIDE 溴化乙锭 219020205 5GM
41 ETHYLENE GLYCOL 乙二醇 219517410 10GM
42 ETHYLENEDIAMINETETRAACETIC ACID 乙二胺四乙酸 215252290 500GM
43 FASTDNA SPIN KIT FOR SOIL 土壤试剂盒 116560200 50PREPS
44 FUCHSIN,ACID 碱性品红 215819725 25GM
45 GLYCEROL  甘油 4800687 500ML
46 GLYCEROL  甘油 4800688 1LITER
47 GLYCEROL  甘油 113055034 100ML
48 GLYCINE 甘氨酸 4808822 1kg
49 GLYCINE 甘氨酸 219482590 500GM
50 GLYCYLGLYCINE 双甘氨肽 219454825 25GM
51 GUANIDINE HYDROCHLORIDE 盐酸胍 219482691 1KG
52 GUANIDINE HYDROCHLORIDE 盐酸胍 210190501 1KG
53 GUANIDINE HYDROCHLORIDE 盐酸胍 210190505 5KG
54 GUANIDINE HYDROCHLORIDE 盐酸胍 4820540 1KG
55 HEPES 羟乙基哌嗪乙硫磺酸 219454925 25GM
56 HEPES 羟乙基哌嗪乙硫磺酸 210192690 500GM
57 HEPES 羟乙基哌嗪乙硫磺酸 210192691 1KG
58 HEPES 羟乙基哌嗪乙硫磺酸 219454950 50GM
59 HEPES 羟乙基哌嗪乙硫磺酸 210192680 100GM
60 HEPES BUFFER 羟乙基哌嗪乙硫磺酸 91688449 100ml
61 HEPPS 羟乙基哌嗪乙硫磺酸 210192725 25GM
62 HEPPS 羟乙基哌嗪乙硫磺酸 210192780 100GM
63 IGEPAL CA-630 聚乙二醇壬基苯基醚  219859650 50ML
64 JANUS GREEN B 詹纳斯绿 520896505 5GM
65 L-(-)-SORBOSE 山梨糖 210293980 100GM
66 LITHIUM CHLORIDE 氯化锂 215013401 1KG
67 LITHIUM CHLORIDE 氯化锂 2150134.5 500GM
68 LITHIUM CHLORIDE,ACS 氯化锂,ACS 215253890 500GM
69 L-METHIONINE 蛋氨酸 219470725 25GM
70 LSM   淋巴细胞分离液 0850494X 100ML
71 LSM   淋巴细胞分离液 850494 5*100ml
72 Lysing Matrix A 研磨颗粒 A 116910100 100 x 2 mL tubes
73 LYSING MATRIX B 研磨颗粒 B 116911100 100X2ML
74 LYSING MATRIX D 研磨颗粒 D 116913100 100X2ML
75 MYCOPLASMA REMOVAL AGENT 支原体试剂液 93050044 5ML
76 MAGNESIUM CHLORIDE HEXAHYDRATE ACS 氯化镁 2191421.1 100GM
77 METHYL GREEN  甲基绿 4806408 25GM
78 METHYLENE GREEN 次甲基绿 215264405 5GM
79 MOPS  丙磺酸 219483725 25GM
80 OIL RED O 油红O 215598425 25GM
81 OIL RED O 油红O 215598483 250GM
82 PBS TABLETS 磷酸盐缓冲液 92810305 100tabs
83 POLYSORBATE 20 聚山梨醇酯 219484180 100ml
84 POLYSORBATE 20 聚山梨醇酯 219484150 50ml
85 POLYSORBATE 20 聚山梨醇酯 210316880 100ML
86 POLYSORBATE 20 聚山梨醇酯 210316890 500ML
87 POLYSORBATE 20 聚山梨醇酯 2194724.5 500ML
88 PONCEAU S 丽春红S 215194250 50GM
89 PONCEAU S 丽春红S 219064405 5GM
90 PONCEAU S 丽春红S 215194280 100GM
91 POTASSIUM CHLORIDE 氯化钾 215194405 5KG
92 POTASSIUM CHLORIDE ACE 氯化钾 219142701 1KG
93 POTASSIUM PHOSPHATE 磷酸钾 2191430.1 0.1KG
94 POTASSIUM PHOSPHATE DIBASIC 无水磷酸氢二钾 2151945.5 500GM
95 POTASSIUM PHOSPHATE MONOBASIC ANHYDROUS 磷酸氢钾无水 2195453.5 0.5KG
96 PPO 聚氧化二甲苯 180237480 100GM
97 RHODAMINE 123 罗丹明 215653025 25MG
98 RHODAMINE B 罗丹明B 215202125 25GM
99 SODIUM BICARBONATE 碳酸氢钠 2191435.5 500GM
100 SODIUM BORATE  硼酸钠 2191436.5 500GM
101 SODIUM BORATE  硼酸钠 219143601 1KG
102 SODIUM CARBONATE 碳酸钠 2191437.1 100GM
103 SODIUM DODECYL SULFATE 十二烷基硫酸钠 219052291 1 kg
104 SODIUM DODECYL SULFATE 十二烷基硫酸钠 219052290 500 g
105 THIAMINE HCL 盐酸硫胺 210302880 100GM
106 TRIS 三羟甲基氨基甲烷 4816116 100GM
107 TRIS 三羟甲基氨基甲烷 4819623 1KG
108 TRIS 三羟甲基氨基甲烷 219560591 1kgs
109 TRIS HYDROCHLORIDE 三羟甲基氨基甲烷 210313001 1KG
110 TRIS REAGENT GRADE 三羟甲基氨基甲烷 215217605 5KG
111 TRIS ULTRA PURE 三羟甲基氨基甲烷 4819638 5KG
112 TRIS UP 三羟甲基氨基甲烷 2103133.1 0.1kg
113 TRIS UP 三羟甲基氨基甲烷 210313301 1KG
114 TRITON x 100 曲拉通X 4807423 100ml
115 TRITON x 100 曲拉通X 4807426 500ml
116 TRITON x 100 曲拉通X 219485450 50ml
117 TRITON X 114 曲拉通x 219397180 100ML
118 TRITON X 405 曲拉通x 215241190 500ML
119 TRYPAN BLUE 台盼蓝 91691049 100ML
120 TWEEN 60 吐温60 210317180 100ML
121 TWEEN 80 吐温80 210317080 100ML
122 TWEEN 80 吐温80 2194725.1 0.1LT
123 Urea 尿素 4821519 1lb
124 WATER,DNASE 水脱氧核糖核酸酶 4821739 500ML
125 FAST GREEN FCF  固绿 4800662 25g
126 4 METHYLUMBELLIFERONE 甲基伞形酮 215168010 10GM
127 4 METHYLUMBELLIFERONE 甲基伞形酮 215247510 10GM
128 BRILLIANT GREEN 亮绿 215051625 25GM
129 BROMOCRESOL GREEN 溴甲酚绿 215250205 5GM
130 BROMOPHENOL BLUE  溴酚蓝 4805732 10GM
131 CALCIUM CHLORIDE  氯化钙 2199673.5 0.5KG
132 MAGNESIUM CHLORIDE ANHYDROUS 无水氯化镁 520984480 100GM
133 METHYL CELLULOSE 甲基纤维素 215549680 100GM
134 METHYL GREEN  甲基绿 4806404 5GM
135 METHYL RED ACS 甲基红 215254525 25GM
136 METHYLENE BLUE 亚甲蓝 4800663 25GM
137 METHYLENE BLUE TRIHYDRATE 亚甲基蓝 219399880 100GM
138 POLYETHYLENE GLYCOL 聚乙二醇 2194839.5 500GM
139 POLYVINYL ALCOHOL 聚乙烯醇 215193883 250GM
140 POTASSIUM ACETATE 乙酸钾 219484390 500GM
141 POTASSIUM ACETATE ACS 乙酸钾 219142590 500GM
142 POTASSIUM BROMIDE 溴化钾 219142690 500GM
143 ROSE BENGAL 玫瑰红 219549105 5GM
144 SAFRANINE O 番红O 215204080 100GM
145 SAFRANINE O 番红精 215204005 5GM
146 SODIUM BICARBONATE 碳酸氢钠 2194553.5 500GM
147 SODIUM PHOSPHATE  磷酸钠 2191441.5 500GM
148 SODIUM PHOSPHATE  磷酸钠 219144101 1KG
149 SODIUM PYROPHSPHATE 焦磷酸钠 215257980 100GM
150 SORBIC ACID 山梨酸 210293790 500GM
151 INDIGO CARMINE 靛胭脂 215263805 5GM
152 NEUTRAL RED 中性红 210243825 25GM
153 NEUTRAL RED 中性红 210243880 100GM
154 D-MANNITOL 甘露醇 2102248.5 500GM
155 D-MYO-INOSITOL 肌醇 219468891 1KG
156 POTASSIUM PHOSPHATE DIBASIC 无水磷酸氢二钾 2191431.1 100GM
157 POTASSIUM PHOSPHATE DIBASIC 无水磷酸氢二钾 2191431.5 500GM
158 8-HYDROXYGUINOLINE 8-羟基喹林 521323280 100GM
159 CHOLINE CHLORIDE 氯化胆硷 219463980 100GM
160 6 BENZYLAMINOPURINE 苄基腺苷 2100912.5 500MG
161 D-(+)-GALACTOSE 半乳糖 219467080 100GM
162 3(4,5DIMETHYLTHIAZOLYL2)2,5DIPHENYLTETRAZOLIUM BROMID 溴化物 2102227.1 100MG
163 3(4,5DIMETHYLTHIAZOLYL2)2,5DIPHENYLTETRAZOLIUM BROMID 溴化物 2102227.2 250MG
164 D-(+)-XYLOSE 木糖 210330080 100MG
165 ACETATE PLATE SEALER  酯板封口机 97640105 100/PK
166 BCIP/BNT LIQUID SUBSTRATE 净液态基质 8980871 100ML
167 DEXTRAN MW 35000-50000 右旋糖酐 210150880 100GM
168 BOVINE IGG 8641402 10GM
169 PEROXIDASE 219537305 5KU
170 IGG 855358 2ML
171 YPD(YEPD)BROTH(POWDER) 114001022 454G
172 TRICINE,ELECTROPHORESIE GRADE 4807413 100GM
173 KANAMYCIN MONOSULFATE 219453105 5GM
174 PUROMYCIN 219453925 25MG
175 N-DODECYLAMINE ACETATE(N/H) 520967780 100GM
176 XYLENOL BLUE 215831005 5GM
177 ACETYLCHOLINE CHLORIDE 219460225 25GM
178 GUM GUAIAC YIELDS HAZY SOLUTION IN METHANOL 215729191 1KG
179 ALBUMIN,HUMAN,FRV LY CREAM COLORED 8823022 10GM
180 LYSING MATRIX E 116914100 100X2ML
181 FASTDNA KIT RNASE/DNASE FREE MATRIX 116540400 100PREPS
182 FASTRNA PRO BLUE KIT RNASE/DNASE FREE MATRIX 116025050 50PREPS
183 D-(+)-TREHALOSE,DIHYDRATE 210309780 100GM
184 D-(+)-TREHALOSE,DIHYDRATE 210309791 1KG
185 RIBONUCLEASE A 210107680 100MG
186 FASTDNA SPIN KIT RNASE/DNASE FREE MATRIX 116540600 100PREPS
187 GLUCOSE-6-PHOSPHATE DEHYDROGENASE 2151188.2 250U
188 ADENOSINE-5`MONOPHOSPHATE DISODIUM SALT 215026405 5GM
189 SULFORHODAMINE B 219459901 1GM
190 PROTEINASE K 219350480 100MG
191 MYCOPLASMA REMOVAL AGENT 93050044 5ML
192 DIETHYL PYROCARBONATE N/H 215090225 25ML
193 4`,6-DIAMIDINO-2-PHENYLINDOLE 215757410 10MG
194 SODIUM SULFATE,ANHYDROUS 2191444.5 500GM
195 1/4 CERAMIC SPHERE 116540412 500EACH
196 L-CARNITINE 219503125 25GM
197 5-5`-DITHIO-BIS-(2-NITROBENZOIC ACID) 215012605 5GM
198 FASTDNA SPIN KIT FOR FECES  116570200 50PREPS
199 P-NITROPHENYL PHOSPHATE LIQUID 8980812 500ML
200 DIETHYL PYROCARBONATE N/H 215090225 25ML

iP-TEC 培养瓶运输收纳盒


产品编号 产品名称 产品规格 产品等级 产品价格
WEB28451 细胞运输收纳盒套装 1 Set
WEB28452 专用托盘 12片
WEB28453 吸液片 36片

稳固Flask,整齐收纳的中间容器iP-TEC 培养瓶运输收纳盒

培养瓶运输收纳盒

iP-TEC 培养瓶运输收纳盒

iP-TEC Flask专用,运输用中间密闭容器(可高压灭菌)。外观整洁,有2个托盘。

  ① 该运输盒最多可收纳6个Flask

  可高压灭菌

  4个带硅胶锁扣,可密封

  ② 稳固iP-TEC Flask的专用托盘

  可高温灭菌,聚丙烯制

  ③ 防震性与吸液性兼备的吸液片

  可高温灭菌,100%纤维素

◆产品规格

产品编号

品名

包装(个)

28451

细胞运输盒套装

1Set

28452

专用托盘

12片

28453

吸液片

36片

※套装内容:活细胞运输用盒子1个、专用托盘2个、吸液片6片

※运输盒尺寸(mm):W210×D147×H70

※运输盒容积:1.3L

※运输盒本体·盖子·托盘:聚苯乙烯     填充物:硅胶     吸液片:纤维素

iP-TEC 培养瓶运输收纳盒 iP-TEC 培养瓶运输收纳盒
iP-TEC® 活细胞运输系列产品详情 iP-TEC® 系列产品简介列表
iP-TEC 培养瓶运输收纳盒 iP-TEC 培养瓶运输收纳盒
iP-TEC® 问题集 蓄热板安装手册